米乐app官网登录PVC配方设计之阻燃剂知识大全

发布时间:2024-05-19 07:09:48|来源:米乐m6备用| 作者:米乐m6官方客服 分类:行业动态

  大多数高分子材料,无论中天然的,还是合成的,遇火都会燃烧.阻燃剂就是一类能够防止材料被引燃或者抑制火焰传播的助剂.阻燃剂主要用于合成高分子材料或天然高分子材料的阻燃.在高分子材料中加工入阻燃剂﹐能够减少高分子材料的可燃性﹐能使高分子材料接触火焰时﹐燃烧迅速变慢﹐离开火源后能较快的自熄。注意﹐含有阻燃剂的材料并不能成为不燃材料﹐它们只能减少火灾危险﹐而不能消除火灾危险。对阻燃剂的要求是多方面的。人们希望阻燃剂能在用量很低的情况下具有持久的阻燃作用﹔希望阻燃剂无毒﹐不会在燃烧时生成有毒气体和浓烟﹔希望阻燃剂具有较高的热稳定性﹐在遇火情况下不会分解或者挥发﹔希望基础树脂的力学性能和物理性能不会由于阻燃剂的使用而损失或降低。应在材料的阻燃性及性能之间寻求最佳的性/价比(effect ratio /cost)﹐而不能过多地降低材料原有的良好性能为代价﹐来一味地满足阻燃性能过高的要求。除此之外﹐在提高材料阻燃性的同时﹐应尽量减少材料的热分解或燃烧生成的有毒气体信发烟量。在阻燃剂领域﹐阻燃和抑烟是相辅相成的。

  阻燃剂主要是含磷﹑卤素﹑硼﹑锑﹑铅﹑钼等元素的有机物的无机物。根据其使用方法﹐阻燃剂一般分为添加型和反应型两类。添加型阻燃剂是在塑料加工过程中简单参加和混合在塑料中﹐主要用于热塑性塑料。反应性阻燃剂是在聚合物合成过程中﹐作为一个组分参加反应﹐并键合到聚合物的分子链上﹐多用于热固性树脂。有些反应型阻燃剂﹐也可在塑料的加工过程中添加。

  按照化学结构﹐阻燃剂又可分为无机阻燃剂和有机阻燃剂两类。无机阻燃剂包括铝﹑锑﹑锌﹑钼等金属氧化物﹑磷酸盐﹑硼酸盐﹑硫酸盐等﹔有机阻燃剂包括含卤脂肪烃和芳香烃﹑有机磷化合物﹑卤化有机磷化合物等。阻燃剂按照起阻燃作用的主要元素还可分为卤素系阻燃剂﹑磷系阻燃剂以及铝﹑锑﹑硼﹑钼等金属氧化物阻燃剂﹔也可以按大的类别分为溴系﹑磷系﹑氯系和铝基﹑硼基﹑锑基阻燃剂等。反应型阻燃剂与树脂起一定的化学反应﹐即阻燃剂与树脂之间有键的结合﹐因此反应型阻燃剂在树脂中比较稳定﹐它对火焰的抑制作用通常比添加型的持久﹐对材料的性能影响较小﹐但操作和加工工艺较为复杂。而添加型阻燃剂只是与树脂物理混合﹐没有化学反应﹐使用量较大﹐操作也比较方便﹐因此成为一种广泛采用的阻燃剂体系。

  阻燃剂的燃烧是一个非常复杂的急剧氧化过程﹐从材料的吸热分解到剧烈的氧化发光发热﹐包括一系列的物理变化和化学变化。聚合物在受到外部热源的作用时﹐首先被加热﹑进而降解﹑生成挥发性的可燃气体和热分解产物。随着可燃性气体浓度的增大﹐当达到某一极限时聚合物开始燃烧。这一燃烧模式中﹐聚合物在热源的作用下﹐首先分解产生可燃性气体﹐可燃性气体从固相扩散到气相﹐气相中可燃性气体与氧气反应而开始燃烧﹐燃烧产生的热量向聚合物表面国辐射并传至聚合物内部﹐聚合物由于热的作用继续分解﹐形成燃烧的循环过程。因此阻燃也就是抑制这个燃烧的循环过程。

  不同聚合物热分解生成的产物决定了聚合物燃烧的难易程度﹐因此不同的聚合物具有不同的燃烧性能。同一聚合物由于加入不同的助剂其燃烧的难易程度也有变化﹐当PVC中加入增塑剂后制品往往变得容易燃烧﹐而加入阻燃剂则使制品难以燃烧。阻燃的目的是为了提高制品的难燃程度﹐减少发生火灾的可能性而使制品变成不燃材料。聚合物阻燃后虽然可以降低发生火灾的危险性﹐但不能完全消除火灾危险。阻燃后的聚合物在大火中仍能猛烈燃烧。

  聚合物的热分解特性决定了聚合物的燃烧性能。聚合物吸收足够的能量后开始分解﹐生成分子量比较小的可燃性气体﹑不燃性气体和炭化残渣。不同的聚合物由于组成和化学结构不同﹐具有不同的热分解性能﹐即不同的热分解温度和不同的分解产物。热分解温度高﹐说明聚合物的热稳定性好﹐需要供给较多的热量才能使其分解。聚合物分解产物决定着聚合物引燃的难易程度﹐分解产物中含有可燃性气体越多越易燃烧。

  燃烧温度对聚合物的燃烧过程有着明显的影响﹐燃烧温度越高﹐聚合物燃烧的速度就越快﹐释放出的热量也越多。实际上聚合物的燃烧速度还受氧气扩散速度的控制。

  聚合物的着火温度对燃烧也起着至关重要的作用。聚合物的燃烧依赖于热分解产生的可燃性气体﹐可燃性气体的着火温度受燃烧活化能的制约﹐因此可燃性气体的着火温度与其化学结构之间并不存在对应关系。

  聚合物的稳定燃烧主要依靠释放出的热量(燃烧热)来维持﹐若燃烧热向周围的散失大于燃烧释放出的热量﹐则一旦撤去热源﹐燃烧就难于维持下去﹐反之燃烧进一步加剧。如果两者达到平衡则进入稳定燃烧状态。

  聚合物的燃烧需要有充足的氧气﹐否则燃烧就不能发生或难于维持稳定的燃烧﹐并产生大量未充分燃烧的烟尘。不同分子结构的材料﹐燃烧时要求的氧气浓度也不同。实际应用是﹐不少氧指数大于21的材料﹐在空气中燃烧而不能自熄。因此通常讲的阻燃并具有自熄性的材料氧指数至少大于27。

  聚合物燃烧时不仅释放出大量的热能﹐而且常常产生大量的渐尘及有毒气体。烟雾中既有黑烟也有白烟﹐有的刺激性很大。烟雾中含炭微粒越多﹐颜色越深﹔含HCL﹑*氢﹑氨等成分越多﹐刺激性越大。

  抑制聚合物燃烧烟雾方法主要有物理方法和化学方法。物理方法重要有隔热﹑降温﹑其实质是抑制聚合物的燃烧。由于抑制燃烧便抑制了烟雾的产生﹔化学法则是采取添加“抑烟剂”的方法﹐根据其作用原理可分为吸咐型和反应型两种。吸咐型使分解或燃烧生成的炭质或石墨状微粒不至扩散在空间形成烟雾。反应型则通过催化分解或燃烧的反应模式﹐改变聚合物燃烧时的产物组成﹐从而达到抑制烟雾的目的。碳酸钙﹑氢氧化镁﹑氢氧化铝等都具有抑烟作用。碳酸钙的抑烟作用主要是捕捉烟雾中的氯化氢气体﹐使之生成稳定的氯化钙而残留于燃烧后的炭化层中。

  聚合物的燃烧是一个非常复杂的过程﹐燃烧产物随着聚合物的组成﹑燃烧条件﹑阻燃体系的不同而不同﹐燃烧过程随着外界因素的变化而变化。故产生的毒性各种各样。

  阻燃剂的作用机理比较复杂﹐相同的阻燃剂在不同的聚合物中的阻燃机理有时也存在一定的差异。阻燃机理的分类归纳起来有以下几种模式﹕1.抑制效应﹐捕获聚合物燃烧生成的活性自由基﹐从而抑制产生活性自由基的链锁反应﹐使燃烧减弱﹔2.链转移效应﹐改变聚合物材料的燃烧模式﹐抑制可燃性气体的产生﹔3.覆盖效应同﹐阻燃剂受热释放出的隋性气体在气相中隔绝可燃性气体与氧的接触﹐或者聚合物表面形成固态的炭层或液体的膜﹐阻止可燃性气体的逸出﹔4.稀释效应 阻燃剂受热分解产生的不可燃性气体稀释氧和可燃性气体的浓度﹐使其达不到继续燃烧所必需的条件﹔5.吸热效应﹐阻燃剂受热分解吸收大量燃烧热﹐使聚合物材料温度上升困难。

  单独使用卤系阻燃剂时﹐主要在气相中延缓或者阻止聚合物的燃烧。卤系阻燃剂在高温下分解生成卤化氢﹐可作为自由基终止剂捕捉聚合物燃烧链式中的活性自由基OH.﹑O.﹑H.,生成活性较低的卤素自由基﹐从而减弱或终止气相燃烧中的链式反应达到阻燃的目的。

  卤系阻燃剂与氧化锑具有显著的协同作用。卤化氢与氧化锑反应生成卤化锑﹐其是决定阻燃作用的关键因素。卤化锑具有优异的阻燃作用表现如下﹕1.卤—氧化锑为分解为吸热反应﹐可降低聚合物的燃烧温度和分解速度﹔2. 卤化锑蒸气能较长时间停留在气相中﹐有效稀释可燃性气体。同时覆盖在聚合物表面﹐可隔热﹑隔氧﹔3.液态及固态卤化锑微粒的表面效应可降低火焰能量﹔4.在火焰下层的固态或熔融态聚合物中﹐卤化锑能促进成炭反应﹐相对减缓聚合物分解生成可燃性气体的速度﹐同时生成的炭层又可将聚合物封闭﹐阻止可燃性气体逸出和进入燃烧区﹔5.三卤化锑在燃烧区可捕捉气相中维持燃烧链式反应的活性自由基﹐改变气相燃烧的反应模式﹐减少反应热而使火焰猝灭。五溴苯与氧化锑的比例在(1—3)﹕1的范围内阻燃效果最好。

  磷系阻燃剂阻燃的材料燃烧时可生成较多的焦炭﹐减少可燃性气体的生成量﹐使被阻燃材料的质量损失率大大降低﹐但燃烧时生成的烟量较大。有机磷系阻燃剂可同时在凝聚相及气相中发挥阻燃作用﹐但以在凝聚相中为主。有机磷系阻燃剂的阻燃机理随着其结构﹑聚合物类型及燃烧条件的不同也存在一定的差异。有机磷系阻燃剂在高聚物受热被引燃时﹐首先分解生成磷酸﹐磷酸脱水生成偏磷酸﹐偏磷酸聚合生成聚偏磷酸﹐这类酸对含羟基聚合物的脱水成炭具有催化作用﹐加速了成炭过程。成炭的结果是在材料表面形成石墨状的焦炭层﹐这种炭层难燃﹑隔热﹑隔氧﹐从而使传至材料表面的热量减少﹐热分解缓慢﹔其次羟基聚合物的脱水系吸热反应﹐脱水形成的水蒸气又能稀释大气中的氧气及可燃性气体﹐有助于使燃烧中断﹔燃烧生成的聚偏磷酸可在材料表面形成一层覆盖于焦炭层的液膜﹐降低焦炭层的透气性并保护焦炭层不被继续氧化﹐也有利于提高材料的阻燃性。有机磷系阻燃剂的凝聚相阻燃机理基本是基于羟基聚合物的﹐故有机磷系阻燃剂在环氧树脂﹑聚氨酯中阻燃作用较大﹐而对不含有羟基的聚合物作用较小。磷系阻燃剂与卤系阻燃剂有协同作用﹐并且依赖于聚合物的类型。

  膨胀型阻燃剂克服了传统阻燃技朮的缺点﹐具有高阻燃﹑低烟﹑低毒﹑无腐蚀性气体产生﹑无熔滴行为等特点。膨胀型阻燃剂通过形成多孔泡沫炭层在凝聚相起阻燃作用﹐炭层经以下几步形成﹕1.在较低温度(150oC左右﹐具体取决于酸源和组分的性质)下﹐由酸源放出能酯化多元醇和作为脱水剂的有机酸﹔2.在稍高温度下﹐无机酸与多元醇(碳源)进行酯化反应﹐而体系中的胺则作为酯化反应的催化剂﹐使酯化反应加速进行﹔3.体系在酯化反一色前或酯化过程中熔化﹔4.反应过程中产生的水蒸气和由气源产生的不燃性气体使已处于熔融状态的体系膨胀发泡﹐同时﹐多元醇和酯继续脱水炭化﹐形成无机物及炭残余物﹐使体系进一步膨胀发泡﹔5.反应接近完成时﹐体系胶化的固化﹐最后形成多孔泡沫炭层。

  氢氧化铝与氢氧化镁在高温下通过分解吸收大量的热量﹐生成的水蒸气可以稀释空气中的氧气浓度﹐从而延缓聚合物的热降解速度﹐减慢或抑制聚合物的燃烧﹐促进炭化﹑抑制烟雾的形成。

  根据这一原理﹐选择金属氢氧化物时﹐其分解温度和吸热量是两项重要的指标。碳酸钙虽然也有较高的吸热量﹐由于其分解温度比聚合物的分解出很多﹐故不能做阻燃剂用。即使与聚合物分解生成的HCL反应﹐由于碳酸钙在固相﹑HCL在气相﹐两者的反应速度和进程受到制约﹐没有明显的阻燃作用。虽然氢氧化铝和氢氧化镁比碳酸钙的阻燃效率要高的多﹐但仍需要加入60%才能起到明显作用.硼酸锌作为阻燃剂可同时在凝聚相和气相中发挥作用。在凝聚相中﹐硼酸锌在火焰作用下能熔化﹑脱水形成玻璃态的包覆层﹐进一步生成无机炭层﹐同时可促进聚合物成炭﹐从而减缓聚合物的分解及可燃性气体的生成速度﹐达到阻燃和抑烟的效果﹔气相中﹐硼酸锌由于分解产生水蒸气而吸热﹐当与卤系阻燃剂并秀或用于含卤树脂时﹐生成卤化锌﹑卤化硼﹐在气相中捕获自由HO.﹑H.发挥气相阻燃作用。

  锌的固体熔体对PVC有抑烟作用﹐体系中含有3.5%---4%的锌有很好的抑烟性能﹐这是在燃烧过程中生成的刘易斯酸ZnCL2能促进PVC有脱氢反应形成反式的烯烃结构﹐有利于分子间的成环作用及炭化物的生成。

  聚合物的发烟性是由于燃烧不完全或生成石墨状微粒而引起的﹐阻燃性能越好﹐聚合物的燃烧越不完全﹐生成的烟就越多﹐因此阻燃和抑烟本身就是一对矛盾。一是聚合物燃烧时﹐本身就释放出大量的烟雾﹔二是由于加入卤—锑阻燃剂或者磷酸酯阻燃剂后﹐使发烟量增大。前一种情况需要加入抑烟剂来抑制其发烟过程﹔后一种情况应该尽量不使用发烟量增大的阻燃剂。根据聚合物燃烧成烟机理可知﹐抑制燃烧产生的烟雾实质上就是抑制聚合物分解的可燃性气体向空。气中的扩散﹑加速气相中可燃性气体转化为水和CO2的过程﹐液相中促进成炭反应并将成炭微粒吸咐在燃烧物表面的过。


米乐app官网登录